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It is known that when plastic materials are eroded by flow of solid particles with a 
small angle of incidence, waves are formed on the specimen surface, the peaks of which 
are oriented perpendicular to the direction of particle motion [1-4]. There are various 
opinions on the nature of this phenomenon. It was proposed in [2] that waves on the 
material surface are caused by plastic deformation under the action of tangent stresses 
in the high-speed two-phase flow. It was demonstrated in [3] that the maximum erosion 
coefficient increases or decreases depending on the sign of the local surface curvature. 
It was concluded from this that the eroding surface is unstable relative to small perturba- 
tions of the erosion velocity, and that this is the cause of formation of finite amplitude 
waves. In [4] the relationship between wave formation and the behavior of the material 
during erosion (brittle or plastic loss of material) was established. It develops that 
some brittle materials become plastic at high loading rates, which leads to a change in the 
dependence of erosion rate on angle of incidence and development of microscopic ripples on 
the specimen surface. We will also note that the wave formation effect is also observed in 
the absence of a gaseous phase, i.e., microscopic waves are produced by the interaction of 
a flow of solid particles with a plastic obstacle [i]. 

In an analysis of the stability of the process of erosion of supersonic nozzles by a two- 
phase flow in [5] an equation was obtained to describe development of longwave perturbations 
in the system: 

02Yw �9 ]~ O~w (0 I )  Oy~Ot=--D ~ 1  Oz2 " 

This equation predicts that because of disruption of equilibrium in the two-phase flow above 
the curved system the given system will develop in an unstable manner. It will be shown 
below that in this case the characteristic wavelength of perturbations is of the order of 
the length of the dynamic particle relaxation zone (X ~ s 

On the basis of the physical model of [3] we have formulated a mathematical model which 
describes microscopic waves on the surface of a plastic material. It develops that at small 
angles of incidence the model reduces to an equation of the form of Eq. (0.i). Moreover, if 
we reject the hypothesis of [3] in favor of that of [2], we also have an equation of the form 
of Eq. (0.i). Consequently, for erosion of a plastic material in a flow of gas with particles 
three different physical processes lead to a single result: the eroded surface proves to be 
unstable, and a perturbation-intensifying mechanism acts in the range of lengths of the order 
of the particle diameter (l ~ dp) and in the region X ~ s similar to the mechanism in a 
system with negative "viscosity." 

i. Model of Wave Formation by Erosion. The model of [3] assumes that waves on the 
surface are produced solely by erosion, so that 

p,Oyw/Ot = -- ppvpE (sin a + Oy~/Ox cos a). ( 1 . 1 )  

Here p~ is the density of eroding material; 0 , Vp are the density and the modulus of the P 
velocity of the particle flow; E is the erosion coefficient; ~ is the angle of attack (Fig. i). 
The model of [3] supposes removal of material due to plastic shear, on the basis of which the 
erosion coefficient was calculated as a function of angle of incidence and local radius of 
curvature of the surface, E - E(~p, R). The fundamental parameter of the theory of [3] is 
the dimensionless complex fF = m~2vp/(2k~2R) , where k w is the effective rigidity of the 
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surface and m is the particle mass. Figure 2 shows functions E(~p) taken from [3], calculated 
for XF = 0.2; 0.i; 0; -0.i; -0.2 (curves 1-5). It is evident that in the range of small angles 
ef incidence (~p % 20 ~ ) the erosion coefficient has a maximum, the value of which is higher, 
the greater the local radius of curvature of the surface. Since for low amplitude waves I/R = 
32yw/SX 2, in the first approximation we have 

E(~p, R) = Eo(a~) ! E~(ap)O~U~JOX ~, 

where Eo, E1 a r e  n o n n e g a t i v e  f u n c t i o n s .  

S u b s t i t u t i n g  Eq. ( 1 . 2 )  in  Eq. ( 1 . 1 ) ,  we o b t a i n  

( 1 . 2 )  

Here 

Oy~,/Ot = --Go(Oy~/Ox) - -  Do(Oy~lOx)82y~/Ox ~. 

E ' Oyw/Oxcos a); G o = (ppvp olP,)(sina + 
D o = (ppvpE~/p.)  (sin a + Oy,::/Ox cos a). 

(1.3) 

(The angle of incidence is expressed in terms of the angle of attack and the local slope of 
the surface with the expression =p := arcLg[(tga-~0yJ0X)/(1--tg aOyjOx)].) Comparing Eq. (1.3) 
to Eq. (0.i), we may conclude that there is an analogy between the processes of wave formation 
in erosion in the range of scales X % d D and X % s In other words, the mechanisms of 
perturbation intensification in the models of [3] and [5] are of the same type. This is 
explained foremost by the fact that the model of [3] is based on the equations of motion of 
a solid body in a flowing medium. In either case the reaction of the curvilinear surface leads 
to intensification or reduction in the erosion rate depending on the sign of the local curva- 
ture of the surface. 

We note that Eq. (1.3) does not contain terms considering plastic deformation of the 
surface. This is an obvious shortcoming of the model of [3]. In reality erosion is a quite 
weak process occurring against the background of the intense process of deformation of the 
surface by solid particles. Below we will consider a model of wave formation with considera- 
tion of erosion and plastic deformations, obtained from the microscopic law of conservation of 
mass of the obstacle. 

2. Microscopic Erosion Equation. Since the processes of erosion and surface deformation 
are caused by discrete particle-obstacle collisions, it is necessary to develop the conditions 
for a continuous description of these processes. Two characteristic time scales can be dis- 
tinguished in this problem: ~i ~ m p ~ p v v ~ d ~ ) ,  the interval between two successive collisions, 
~2 ~ ~I/E, the characteristic erosion time. For erosion of metals E %< 10 -3 for Vp ~ i00 m/sec, 

consequently T 2 ~ i03~I for the indicated collision conditions. In this case there exists an 

intermediate range of scales where the number of collisions is large, while erosion is still 
low, i.e., the range ~i << T << T2. We will assume that the true plastic flow satisfies the 
continuity condition 

Op/Ot - 5 0 p u / O x  A- Opv/@ -~ Opw/Oz = O. (2.1) 
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Integrating Eq. (2.1) over the specimen thickness, we obtain 

7, ' 7, '~ 

(2.2) 

where ~(x, z, t) is the instantaneous surface relief, ~ is the true erosion rate. 

Under erosion conditions the surface microrelief is changed in a random manner, since 
every particle-obstacle collision act is a random event. To eliminate the random component 
of the function ~(x, z, t), which changes at a frequency ~i/~z, in Eq. (2.2) we average 
over time from t to t + �9 and over an area of the surface with size AxAz = ~d2/4. Since 

P 
>> ~z, the number of particles incident in the given area over the time ~ will be quite 

large, and therefore the results of averaging will correlate with the parameters of the 
particle flow. If we assume that the density of the material changes only insignificantly, 
then after averaging, Eq. (2.2) takes on the form 

p.~yw/Ot + OJ~/Ox + o]~/az =--p~upE(sin  ~ + Oyw/Oxcos~). ( 2 . 3 )  

H e r e  J x ,  J z  a r e  t h e  c o m p o n e n t s  o f  t h e  mass  f l o w  v e c t o r  due  t o  p l a s t i c  d e f o r m a t i o n s .  E q u a t i o n  
(2.3) differs from Eq. (i.i) in the presence of divergent terms, describing the change in 
the surface due to plastic deformation of the obstacle. These terms vanish upon averaging 
over a specimen surface with sufficiently great area (AS >> ~d~/4). In this case we trans- 
form to the scale range X % s where Eq. (i.I) is also satisfied, this being one of the 
equations of the asymptotic model of [5], describing erosion in a two-phase flow. 

To complete the model of Eq. (2.3) we assume that the particle flow is sufficiently 
rarefied, and therefore the effects of multiple collisions may be neglected. Then the 
expressions 

Jx ==- Q{o~p)npvi,(sin cz q- ayw/ax cos a),. Jz  = o~ ( 2 . 4 )  

are valid, where Q(ap)--Ip'u'dajxdt describes the shift in mass along the surface upon 

collision of an individual particle with the obstacle. Combining Eqs. (2.3), (2.4), we obtain 

0!t ~/at = --G(Dy JOx) -- D~(ayw/a~c)a~yw/OX~, ( 2 . 5 )  
D i = (n~v~,/p,) [Q cos a + (sin cr + Oyw/SX cos cr dQ/da~]. 

It is clear from general considerations that Q(0) = Q(~/2) = 0. Consequently, this function 
has a maximum at some ap = a*. But then in the interval 0 < a < ~* the condition dQ/d~p > 0 
is satisfied, so that D I > 0. Thus, here we have the phenomenon of negative "viscosity" 
again. Generally speaking, Eq. (2.5) is more physical than Eqs. (0.i) or (1.3), in which 
the coefficients of the highest derivatives are constant in sign. It can easily be shown 
that Dz < 0 as =z + ~/2 - 0. This means that Eq. (2.5) is a variable type equation [6]. 
Using the model of [3], one can calculate the functions G(R) and Q(R). Then in the general 
case Eq. (2.3) takes on the form 

ayw/at = -Go (ayjax) - Da2yw/ax ~ - ka3yw/ax~ (2.6) 

w h e r e  "D= O o + D~--3  (npv~/p,) Oyw/Ox (sin a + Oy~/#x cos~) dQ/dR; k = (n~vp/p,)(sin~ + Oy~/Oxcosa)dO~ (t/R~. 

It is evident from Fig. 2 that D z § 0 as ~ ~ ~/2. Therefore the function ~ changes sign 
in the interval 0 < ~D < ~/2. The properties of the solutions of Eq. (2.6) have been studied 
in detail by many authors (this is a Korteweg--de Vries type equation). It is known, in parti- 
cular, that as k + 0 the peaks of the traveling waves become sharper, changing into the system 
of [7]. It is curious that such an effect has been observed experimentally in erosion of a 
plane wedge in a dust flow [8]. 

3. Mechanisms for Development of Surface Instability in a Two-Phase Flow. We will now 
consider in greater detail the question of stability of a body surface during erosion in a flow 
of gas with particles. We will con~nence from the equations of the asymptotic model developed 
in [5]: 
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O2ys aYs OYw 0 
l. Ox--" ~ + Ox Oz + (Y" - -  Yw) ~ In (puyV)w = 0~ ( 3 . 1 )  

N 
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Here yw(X, t) is the boundary surface; ys(x, t) is the particle trajectory; s is the dynamic 

relaxation parameter; (puy~)w is the gas flow in the flow region near the wall; N is the 
number of particle fractions; ~ = 0 and 1 in planar axisymmetric flows respectively. 

The basic result of [5] concerns behavior of long wave perturbations in the model of 
Eq. (3.1). In long waves system (3.1) can be reduced to system (0.i) with all subsequent 
conclusions. In Eq. (3.1) we take / ~ = c o n s t ,  v = O, (pu) ,~=cons t ,  9su~=const, E ~ = ( u ~ / % ) i y ~ . y w l q ,  y~.w<< 
I, s = p = i. With these assumptions Eq. (3.1) describes erosion of a planar thin profile 
in a monodispersed flow. In contrast to the model developed in [9], system (3.1) is valid 
not only at low, but also moderate particle flow rates. After some transformations we 
obtain from Eq. (3.1) 

l ~ t  + l~+lGl~lqqxx + ~t = 0~ (3.2) 
Oyw/O~ = lpN x + 'q, 

where ~ = ~p/Up is the slope of the particle trajectory; G = 9p=u~/(p,ee~(q + i) is the 
0 

characteristic erosion rate; l, 0 ~ = pflpuoo/18~oo, p~ is the density of the particle material; 
D~ is the dynamic viscosity of the gas. 

In Eq. (3.2) we take ~ = ~l~ + ~.~, q~= cons t  (parabolic profile), ~.~<<~l~, ~I ~ e x p ( i k x  --,io~t)~ 

and find the monochromatic perturbation spectrum of the corresponding iinearized system: 

= c, I + z ,k ) / (  i + ( 3 . 3  ) 

Since Im ~ > 0, system (3.2) is unstable in the vicinity of the initial state ~x(X, 0) = n~. 
The characteristic time for instability development x* ~= l,/G(~l~l~,) ~ Hence, with the 
assumption ~ = I/R, where R is the local radius of curvature of the wall, we have an esti- 
mate of the time for instability development in erosion of a supersonic nozzle [5]. It is 
evident from Eq. (3.3) that the characteristic wavelength is of the order of magnitude of 
the length of the dynamic relaxation zone X % s 
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Analyzing the role of individual terms in the first expression of Eq. (3.2), we con- 
clude that with interaction of the first and second terms formation of an intense discontinuity 
in the system is possible. The expressions on this discontinuity have the form 

[~] = O, [y~] =, l~[qx], G/~[~ +I] = c[~]~]~ (3.4) 

where [~x] =~--~x is the amplitude of the discontinuity: c is the velocity or propaga- 
tion of the discontinuity. 

At q = 1 from Eq. (3.4) we find c = G[y~]. From this it follows that the ledges formed 

upon erosion of nozzles by monodispersed particles [5] should shift in the direction toward 
the nozzle mouth. In numerical calculations nonlinear effects appear before the linear 
mechanism of perturbation intensification can develop. Figure 3 shows the results of 
numerical calculations of erosion of a parabolic profile within the framework of the model 
of Eq. (3.2). Curves 1-4 show the change in slope of the profile at times 0, 0.2, 0.6, 0.8 
~*. It is evident a strong discontinuity in the derivative of the profile (ledge) is formed, 
as a consequence of which it is difficult to distinguish linear effects occurring at t > ~*. 
Figure 4 presents the results of numerical calculations of the mass removed 6y w = Yw(X? t) - 
Yw(X, 0) for erosion of a supersonic nozzle with a parabolic directrixin the final portion, 
as performed with the model of Eq. (3.1). In this example N = 100, and the calculation was 
performed by an explicit finite difference method of first order accuracy. Curves i, 2 
were calculated for t = 1.42 and 3.5 sec. Also shown is a singularity in the behavior of 
initially smooth perturbations in models of the type of Eq. (0.i). One can clearly see the 
sharpening of the wave structure, from which crests are formed - the segment ABC in curve 2. 

Summarizing the above, we can make two important conclusions regarding the properties 
of systems such as Eq. (3.1): due to disruption of dynamic symmetry in the two-phase flow 
above the curved surface, intensification of initial perturbations occurs, and because of 
the nonlinear properties of the transport operator, upset of the initially smooth perturba- 
tions occurs with formation of intense discontinuities in the derivative of the contour. 

4. Effect of Fine Scale Perturbations on Macroparameters of the Process. As has al- 
ready been noted above, transition to the scale region I ~ s is accomplished in Eq. (2.3) 
by averaging over an area AS >> ~d2/4. We will now pose the problem of determining the 

P 
effective erosion parameters for an originally planar specimen with specified surface micro- 
relief Yw(X, z, t). If in the scale region X % s the specimen remains planar, then after 
averaging Eq. (2.3), 

p,O<yw>/Ot =--ppv~(<E>sin ~ + <EOyw/Ox>cos~) =--p~vvEe~tsin~. (4.1) 

Thus the effective (observed in experiment) erosion coefficient is by definition 

Ee, = <E> + <EOyw/Ox > ctg a.  ( 4 . 2 )  

We will assume that the dependence of the true erosion coefficient on angle of incidence for 
the given material has the form E % (sin ~p)q, typical of brittle removal [4] A similar 
dependence is observed in the case of high-speed interaction (Vp ~ 1 km/sec) i9] Averaging 
in Eq. (4.1) we obtain 

Eet~ = sin ~ <cosw>~-cos2a <si,J a JcoS  ~w>/sin a a t .  q = t.~ 
Eett = Sin ~a  <cos2~w> + 3c~s~a <sin~a~> ~at q =  2, ( 4 . 3 )  

where tan ~w = 8Yw/SX" Commencing from Eq. (4.3), we can interpret the experimental results 
of [4] in the following manner. In the brittle destruction region surface roughness is 
negligible, the contribution of the second term on the right side of Eq. (4.3) is small, and 
therefore Eef f ~ <(sin ~)q. Upon transition to plastic behavior waves are formed on the 
specimen surface, whence the role of the second term increases abruptly and the dependence of 
the erosion coefficient on angle of incidence at ~ << 1 under these conditions is determined 
by the parameters of fine scale perturbations, Ee~< sinz~w>. 

Figure 5 shows experimental dependences of wave amplitude for ash erosion of heater 
tubes [2] (curve 2) and the erosion coefficient of glass [4] in a flow of SiC particles 
Vp ~5152 m/sec) for the case of brittle (d D m 216 ~m) and plastic (d D m 9 Dm) erosion (curves 
3-and I, respectively). There is a correlation between the curves Eeff(~) and 6h(~) for 
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plastic erosion (curve i), where finite amplitude waves are formed on the surface [4]. On 
the other hand, the indicated relationship follows from the estimate <s[n~ ~w> ~(64/%) ~ 
and Eq. (4.3). 

Thus it has been established that fine scale perturbations have a significant effect on 
the behavior of the effective erosion coefficient, especially in the region of small angles of 
incidence. These results are a basis for constructing a complete model of erosion of plastic 
materials, which must include a model of particle interaction with the obstacle, Eq. (2.6), 
and a procedure for averaging Eq. (4.2) for comparison of Eeff(~, Vp) with available experi- 
mental data. 
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